HiHAT: A Way Forward to Perf P
with Retargetable Infrastru

CJ Newburn, Principal HPC Architect for Comp

OUTLINE

Perspective: performance portability
Challenges: More heterogeneity in HW platforms, SW interfaces

Solutions: Common retargetable infrastructure - hierarchical hetero async tasking

CoE Perf Portability Workshop 8/22/17

HETEROGENEITY AND RETARGETABILITY

Heterogeneity within a platform

Increasing specialization

Host, accelerators; kinds, layers and locations of memory; interconnect
Retargetability across platforms

One software architecture, many targets

And of course we want...

CoE Perf Portability Workshop 8/22/17

PERFORMANCE PORTABILITY DEFINITION

“Same code” + different architectures - efficient performance

CoE Perf Portability Workshop 8/22/17

PERFORMANCE PORTABILITY CONTRADICTIONS

“Same code” + different architectures - efficient performance

Contradictions - first set

But | like my I The other guy’s language gives horrible performance!
But | need a special for each target!
But | have a favorite . Don’t take that away from me!

CoE Perf Portability Workshop 8/22/17

=4 Y
. é skt A
. 6

target agnostic

HiHAT is at the boundary
Target dinectives,
langauages, DSLs

target specific

PERFORMANCE PORTABILITY PARTIAL SOLUTIONS

“Same code” + different architectures - efficient performance

Potential solutions - first set
: Target-specific task implementations where needed

: Task implementations tailored for data layout, scheduler can choose to re-
layout data off of the critical path

: Layer client user-facing runtimes on top of retargetable interface

CoE Perf Portability Workshop 8/22/17 7

PORTABILITY IS IN THE EYE OF THE BEHOLDER

Task: High-level language, with directives or DSL or even assembly instructions

CoE Perf Portability Workshop 8/22/17

PORTABILITY IS IN THE EYE OF THE BEHOLDER

Pluggable implementations
Task: High-level language, with directives or DSL or even assembly instructions

Best way for a given platform: target-specific APls and implementations

CoE Perf Portability Workshop 8/22/17

PORTABILITY IS IN THE EYE OF THE BEHOLDER

Sequence of target-agnostic primitives
Invoke, manage data, move data, coordinate, enumerate
Pluggable implementations
Task: High-level language, with directives or DSL or even assembly instructions

Best way for a given platform: target-specific APls and implementations

CoE Perf Portability Workshop 8/22/17

10

PORTABILITY IS IN THE EYE OF THE BEHOLDER

Scheduler - binding and ordering, based on cost model
Select target, implementation, layout, add actions as needed
Invoke primitives where and when most appropriate
Sequence of target-agnostic primitives
Invoke, manage data, move data, coordinate, enumerate
Pluggable implementations
Task: High-level language, with directives or DSL or even assembly instructions

Best way for a given platform: target-specific APls and implementations

CoE Perf Portability Workshop 8/22/17

11

COMMON RETARGETABLE SW ARCHITECTURE

Target informed 1

(%]
g *é Cross-platform }
35 Cost target agnostic
b
< £ models
o =
©3 .

Negligible

§ = overhead
2 < N
=i Target specific
E g dispatch
&I

Target-specific
el layout
J Data management

[] Data movement o
Target-specific
_))) coding
Task invocation Task invocation

Implementation
glue code

12

MOTIVATIONS FOR A SCHEDULER

Lack of predictability
Where data comes from, in memory hierarchy or across network

When computation will finish: complex algorithms, load imbalance, DVFS
Growing complexity

Too many factors at play to settle on a single portable static scheduler

Too much diversity in increasingly-heterogeneous platforms

J

Going asynchronous

Break out of bulk synchronous, move to point-point

Dynamic management of resources

PROVIDING ACCESS TO PERFORMANCE

Meeting our customers where they are, offering a path forward
% lines of code gains, ROl

Exposing maximal parallelism

Extreme scaling
Tuning for the target platform
Tailored abstractions

Limited effort
Traditional language interfaces

CoE Perf Portability Workshop 8/22/17 14

App developers
code

Services Transformations

Aggre- Decom | | Special-
gate -pose ize

Moni-
toring
Viz Comms Compute Sched
configure costs costs .

Common plumbing layer: HIHAT

Functional building blocks
Tuners

Experts
implement

https://wiki.modelado.org/Heterogeneous_Hierarchical_Asynchronous_Tasking

HIHAT: APIS FOR RETARGETABILITY

Plug in target-specific implementations from below

Implement data management, data movement, invocation, coordination, querying

HiHAT User layer

Target-specific implementation

User: ease of use via abstraction

Common: minimal overhead HIHAT thin common layer

Target-specific implementation

CoE Perf Portability Workshop 8/22/17

16

Bold = shared material on mapping to HiHAT

LANGUAGE OR TASKING FRAMEWORKS

C++ (CodePlay, IBM) Michael Wong
Chapel (Cray), Brad Chamerlain

Charm++ (UIUC) Ronak Buch, (Charmworks)
Phil Miller

Darma (Sandia) Janine Bennett
Exa-Tensor (ORNL) Wayne Joubert
Gridtools (CSCS, Titech) Mauro Bianco
HAGGLE (PNNL/HIVE) Antonino Tomeo
Kokkos, Task-DAG (SNL) Carter Edwards
Legion (Stanford/NV) Mike Bauer
OmpSs (BSC) Jesus Labarta

Realm (Stanford/NV) Sean Treichler
OCR (Intel, Rice, GA Tech) Vincent Cave
PaRSEC (UTK) George Bosilca

Raja (LLNL) Rich Hornung

Rambutan, UPC++ (LBL) Cy Chan
R-Stream (Reservoir Labs) Rich Lethin
StarPU (INRIA) Samuel Thibault

SyCL (CodePlay) Michael Wong

SWIFT (Durham) Matthieu Schaller
TensorRT (NVIDIA) Dilip Sequeira

VMD (UIUC) John Stone

CoE Perf Portability Workshop 8/22/17 17

TABULATED RESULTS

Strong interest, modestly amenable; progress; next

Type of functionality Level of Amenability
interest to
refactoring
H M L H M L
Data movement - target-optimized copies, DMA, networking 15 1 1 7/ 5 1
Data management - kinds and layers of memory, specialized pools 1 4 2 7 4 2
Coordination - completion events, locks, queues, collectives, iteration 8 0 6 5 1
Compute - local or remote invocation 3 4 4 5 4
Enumeration - kinds/# of resources, topologies 11 5 1 4 4 3
Feedback - profiling, utilization 6 7 2 4 7 1
Tools - tracing, callbacks, pausing, debugging 3 12 2 2 7 2

CoE Perf Portability Workshop 8/22/17 18

ADOPTION

Meet requirements
Provisioning: C ABI, library, interoperable, profiling
Performance: enables access to perf features, low overhead - supports fine granularity
Incremental, easy on ramp
Open architecture
Be a provider for tasking and language runtimes and frameworks
Plug in implementations from below, from vendors or third parties
Share building blocks, e.g. cost models, schedulers
Easiest and best solution

CoE Perf Portability Workshop 8/22/17

19

SO MANY FRAMEWORKS, SO LITTLE TIME

Design
] N
Porting and performance tuning Common plumbing layer: HIHAT
] u

Validation

Tegra
ALY

x86 POWER

CoE Perf Portability Workshop 8/22/17

20

PROTOTYPE INFRASTRUCTURE CAPABILITIES

Current test platform: 2 CPU sockets + 2 GPUs in one node
Data movement
User Layer: <dst, src, size> using logical handles for addressing
Common Layer: use specialized flavors
Set up comms, establish visibility as needed
Data management

User Layer: Allocate or register, and create address-memory resource association
Also support tagging to clean up a set of allocations/wraps at once
Common Layer: No tagging
Invocation
Register target-specific implementations, invocation with closure

Microbenchmarks show overheads are within measurement noise
CoE Perf Portability Workshop 8/22/17

21

MOLECULAR ORBITALS (MO) APPLICATION

Compute wavefunction amplitudes on a grid for visualization
Evaluate linear combination of Gaussian contractions (polynomials) at
each grid point, function of distance from atoms

Algorithm made arithmetic bound via fast on-chip memory systems

Three different algorithms for different memory structures:

GPU constant memory
Shared memory tiling
L1 global memory cache

Representative of a variety of other grid-oriented algorithms, stencils
Use of special GPU hardware features, APIs helped drive completeness
of HiHAT proof-of-concept implementation already at an early stage

CoE Perf Portability Workshop 8/22/17 22

MOLECULAR ORBITALS PERFORMANCE

Performance of MO
algorithm on HiHAT User
Layer PoC
implementation closely
tracks CUDA
performance.

Spans x86, POWER and
Tegra ARM CPUs

HIHAT API GAINS FOR MOLECULAR ORBITALS APPLICATION

Molecular Orbital Algorithm, Mem Kind Speedup HiHAT
vs. ShMem | API gain

Xx86 SharedMem HiHAT 1.000x 1.028x

+ L1CachedGIbIMem HiHAT 1.088x 1.025x

GPU ConstMem HiHAT 1.472x 1.031x

PWR | SharedMem HiHAT 1.000x (0.999x

+ L1CachedGIbIMem HiHAT 1.116x 1.001x

GPU ConstMem HiHAT 1.534x (0.983x

ARM | SharedMem HiHAT 1.000x -

+ L1CachedGIbIMem HiHAT 1.094x -

GPU ConstMem HiHAT 1.059x -
NoPin-SharedMem HiHAT 2.349x (0.995x
NoPin-L1CachedGIlbIMem HiHAT | 2.561x (0.984x
NoPin-ConstMem HiHAT 2.562x (0.998x

23

CoE Perf Portability Workshop 8/22/17

PORTABILITY ON MO

TARGET-SPECIFIC APl USAGE IN MOLECULAR ORBITALS APPLICATION

| Category | Original CUDA | Ported to HIHAT ||
Invoke <L 3 | hhulnvoke() 3
Data mvt cudaMemcpy() 7 | hhuCopy() 7
cudaMemcpyToSymbol() 7 | hhuCopy() 2
i . Configuration || cudaSetDeviceFlags() 1 | (config) 0
Time to port MO: g g g
cudaFuncSetCacheConfig() | 2 | (config) 0
1 1 Data mgt, cudaMalloc() 7 | hhuAlloc() 7
HIHAT haS fewer unique APIS (6 vs. 10) minimal cudaMallocHost() I | hhuAlloc() 1
. . cudaHostAlloc() 1 | hhuAlloc() |
HiHAT has fewer static API calls (30 vs. 38) Ifree hhuClean() [1]
[symbols] - | hhuRegMem() 7
Data mgt, cudaFree() 7 | hhuFree() (7)
imi 1 eliminatable cudaFreeHost() 2 | hhuFree() (2)
ccelerate optimization space
. [symbols] - | hhuDeregMem() | (7)
exploration
. . . | Coordination || - 0 | hhuSyncAll) | T ||
Also enhance coding productivity —
static 144343494940 38| 9434+0+16+16+1 | 43
static min’l 144343494940 38| 9434+0+17+40 +1 30
unique 2+ 142454040 10] 1+14042 42 +1 | 7
unique min’| 2+ 142454040 10 T+14043 40 +1 | 6
24

CoE Perf Portability Workshop 8/22/17

TAKE-AWAYS

Portability comes at the scheduling layer, on top of target-agnostic primitives
Dynamic scheduling may have the most promising path to portability and scaling

Necessary conditions: meet requirements; be pluggable; open source approach;
be the easiest path to performance, generality and robustness

HiHAT prototype looks promising as a retargetable infrastructure

CoE Perf Portability Workshop 8/22/17

25

